Institutional Citizen Science

Personnel motivation and esprit de corps have always been important in any organization. Citizenship and Corporate Social Responsibility (CSR) have sometimes become as important to the brand as the trade name or logo. For many reasons, it is wise to consider institutional citizen science.

Traditionally, participation in citizen science projects has been done at the individual level. That is, observations (e.g. ecosystem projects), identifications (e.g. galaxy classification), and computational contributions (e.g. protein folding simulation) have been made by individuals. People sometimes join teams of like-minded or geographically grouped participants, and their efforts are often reported or tallied as a team. However, there has been very little organizational-level participation. There are many potential benefits of institutional citizen science, and in particular the computational variety.

Employee engagement can be improved. IT staff can provide leadership in setting up the required infrastructure, even with minimal initial effort. They can provide ongoing maintenance, expansion, and IT efficiency improvements. They can learn a lot along the way. Communications staff can prepare and disseminate any required internal information, and again, learn a lot along the way. Seeing the daily progress of the organization’s participation can engage everyone. A well run project can advance the cause of a more inspired, invigorated, enthusiastic, energized, and empowered staff with more of a sense of ownership for their organization. Progress in citizen science projects could be shown in a dedicated section of the organization’s intranet. Perhaps even a big screen could be located in common areas such as the lobby or cafeteria to show live content (e.g. simulations, animations, numerical results) and promote a sense of community. Management can simultaneously learn a lot about concepts such as computing as talent, cognitive computing, ‘gamification’, and integrating technology.

Institutional culture can benefit. Loyalty and pride in the institution are valuable assets. Leadership in ‘doing good’ is a strong motivator and has been a cornerstone of CSR for decades. There are opportunities for recognition and appreciation of both individual and team efforts. Both individuals and groups can suggest which projects to participate in from the large and growing menu available. Citizen science projects offer opportunities for people to think outside the box, to step out of their comfort zone, to consider more diverse possibilities, to form new partnerships, and to take the long view. A culture with all specialists and no generalists needs fresh air to breathe. The study of nature can offer a welcome break from politics and policy considerations, immediately and easily putting everyone on the same level: an observer.

Institutional innovation can benefit. Although tempting (when myopically studying spreadsheets) to farm everything out to consultants and sub-contractors, in-house innovation can be extremely valuable. Skunkworks (small teams for experimental projects) and Bimodal IT (production and exploration as separate yet symbiotic streams) can provide huge benefits, and citizen science is a natural skunkworks project. Notions of siloed knowledge and operation can be skeptically reviewed and perhaps even challenged without having to disrupt the larger organization. ‘What if’ models can move from pure theory to at least partial practicality. Distributed infrastructure is one example, and computational citizen science is all about distributed processing. Owning innovation, moving it vertically through an organization at the appropriate pace, and finally delivering it to the world can generate and cultivate innovation itself as an asset. Like the old proverb says: “Give someone a fish and they’ll eat for a day. Teach someone to fish and they’ll eat for a lifetime.”

Internal HR can benefit. Management and leadership talent can be identified and incubated in a non-threatening, non-competitive domain. Understanding the internal talent ecosystem is essential for the health and future scalability of any organization.

Governments can draw upon citizen science as well. On a regional or national scale, public policy can both encourage and benefit from an actively engaged citizenry. In-depth issues such as climate change, demographic change, disruptive technologies such as Artificial Intelligence (AI) and Automation, and general scientific and digital literacy become much easier to create a dialog around if the communication and participation is two-way. Agile, multi-disciplinary, multi-lingual, and age-spanning efforts are all increasingly valuable. A sparse and diverse population can come together on a unified effort without sacrificing, and perhaps even benefiting from, that diversity.

In the coming age of AI and Computer-Generated Imagery (CGI), there will be a tsunami of hoaxes, spoofing, and fake news. At best, mistaking such things for real content is embarrassing. At worst, these could represent an existential threat. The surest defense against these dangers is scientific literacy, both in the general population, and particularly within the organization. The first step in avoiding a trap is knowing of its existence.

There is also of course, a direct benefit to scientific research. Citizen science is not a replacement for academic research, it’s an adjunct. Projects run under the supervision and purview of scientists benefit in several ways from citizen participation. There is an increase in resources, harnessing more labor (e.g. collecting data), human intelligence (e.g. categorizing images), and computational power (e.g. crunching numbers for simulations). There is an increase in scope, drawing from a wider pool of time, space, and experience. There is also an increase in public awareness of scientific research and methodology. Scientific research is its own reward, and is worth defending.

Finally, there are the usual advantages that come with economy of scale. By gathering the efforts of many individuals under one roof, much wasteful duplication is avoided. Looking at computational citizen science in particular, instead of having members individually setup and run their own ‘crunching’ computers at home, they can participate at the workplace or remotely (perhaps using the ‘cloud’). The performance per watt of one big machine is much better than many smaller ones. It’s also a way for social skills to be advanced over isolation in the internet age.

Organizational learning requires interaction and participation. Growth requires innovation. Basic scientific literacy improves objectivity and comprehension of a complex world. Computational thinking improves problem solving skills. Improved use of reason and logic for analytical thinking, deduction, and inference might result. These skills and attitudes may not be easily quantified or measured, yet they surely benefit the organization, especially in the long term. Learning becomes an organizational task and goal, resulting in a more knowledgeable enterprise as a whole. Improvements in individual skills, together with deeper and wider internal communication go a long way toward that end. Diversity of learning styles, participation levels, and paces can be accommodated. The best organizations assign the ends, not the means.

“If you want to build a ship, don’t drum up people to collect wood and don’t assign them tasks and work, but rather teach them to long for the endless immensity of the sea.”
– Antoine de Saint-Exupéry